

Angela D. Alsobrooks County Executive

Calverton Channel Rehabilitation

September 5, 2019

Presented by Mary Abe, DPW&T Project Manager, OE&PM

AGENCY OVERVIEW

Department of Public Works & Transportation(DPW&T):

- Projects include bridge reconstruction, Green/Complete Street Projects, roadway widening and realignments, repair of drainage and flood control systems.
- Maintains
 - 1,900 miles of County-roadway and associated sidewalks
 - We are responsible for 172 bridges in the County which we are responsible for as well as hundreds of smaller structures and culverts, and flood levees.
 - Snow removal, street tree plantings, and street lighting

STORMWATER MANAGEMENT

DPW&T owns, operates, and maintains the County's public stormdrain and flood control facilities

- Drainage Channels
- Stormwater Management Ponds
- Bioretention
- Flood Levee Systems

CALVERTON CHANNEL HYDROLOGY

Calverton Channel conveys **Galway Tributary.** Less than a ¼ mile from the project site, **Galway Tributary** flows into Little Paint Branch. Little Paint Branch and Paint Branch then combine with Beaverdam Creek to form the Northeast Branch of the Anacostia River.

CALVERTON CHANNEL'S DRAINAGE AREA

Project Drainage Area: 1.3 Sq. Miles/832 Acres

Watershed: Anacostia

Subwatershed: Little Paint Branch

Impervious Surface: 48% or 397 Acres Pervious Surface: 52% or 434 Acres

The ratio of impervious to pervious surfaces for the Calverton Channel project area is categorized as a highly impervious drainage area. The overall average impervious area rate for the Anacostia Watershed is 25%.

CALVERTON CHANNEL AT BELTSVILLE DRIVE

CALVERTON CHANNEL FROM CALVERTON BLVD. TO COUNTY BOUNDARY

CALVERTON CHANNEL'S HISTORY

1965 Before the WSSC constructed concrete channel

CALVERTON CHANNEL'S HISTORY

1977 AFTER THE WSSC CONSTRUCTED CONCRETE CHANNEL

WHY REHABILITATE THE CALVERTON CHANNEL NOW ?

- Calverton Channel was constructed around 1973
- It is now almost 50 years old with significant and ongoing concrete deterioration
- Degradation of the concrete slab can lead to total channel failure during a major storm event

Examples of deteriorating concrete channel slabs found throughout Calverton Channel

WHAT CAN HAPPEN WHEN A CONCRETE CHANNEL FAILS? Broken slabs create severe blockages which can cause system surcharges, flooding, and damage to downstream bridges, box culverts, vital storm conveyances, and transportation system structures.

EXISTING CHANNEL CONDITIONS FROM BELTSVILLE DR. TO CALVERTON BLVD.

LOOKING DOWNSTREAM AT CORNER OF CALVERTON BLVD. AND BELTSVILLE DRIVE

LOOKING DOWNSTREAM AT BELTSVILLE DRIVE CULVERT

LOOKING UPSTREAM AT BELTSVILLE DRIVE CULVERT

LOOKING UPSTREAM AT EXISTING PEDESTRIAN BRIDGE

LOOKING UPSTREAM APPROACHING CALVERTON BLVD.

CALVERTON BRIDGE

EXISTING CHANNEL CONDITIONS FROM CALVERTON BLVD. TO COUNTY'S BOUNDARY

CALVERTON BLVD. BRIDGE-LOOKING DOWNSTREAM

LOOKING DOWNSTREAM AT CALVERTON BLVD. CULVERT AT BEND

LOOKING UPSTREAM

LOOKING DOWNSTREAM

LOOKING UPSTREAM

60" PIPE OUTFALL

CONCRETE CHANNEL VS. GREEN CORRIDOR

In Kind Concrete Channel Replacement v3. Green Corndor
--

REPLACEMENT DIFFERENCES	IN-KIND REPLACEMENT	GREEN CORRIDOR
12 to 16 month construction timeline		\checkmark
Fences, sheds must be removed or relocated. Tree removal required as needed to construct channel.		
Mow strip next to channel with no vegetation zone to prevent future channel issues. Chain link fence boundary.		
Trees and vegetation to create buffer next to channel for enhanced long term views, habitat, and creation of a green corridor		
Water quality benefit to help clean the Anacostia River and Chesapeake Bay		
Reduced 100 Year Floodplain elevations and floodplain storage area		

WHY A GREEN CORRIDOR CONCEPT?

- Reduces 100 Year Floodplain
- Aesthetic improvement to support higher land values

States and a second of the second

- Water quality benefits to clean the Chesapeake Bay
- Long term sustainability and reduced maintenance
- Equivalent construction budget to in kind replacement with many more benefits
- A negative becomes a positive: The Channel becomes an asset transformed into a Green Corridor with native plants, pollinators, habitat, and flood storage

WHY A GREEN CORRIDOR CONCEPT?

• Eligibility for Supplemental State Grant Funding:

GREEN CORRIDOR CONCEPT

GREEN CORRIDOR CONCEPT

PERSPECTIVE 1 - AFTER

GREEN CORRIDOR

APPROXIMATELY ½ MILE OF GREEN CORRIDOR

GREEN CORRIDOR SYSTEM

GREEN CORRIDOR TECHNIQUES

GREEN CORRIDOR TECHNIQUES

GREEN CORRIDOR TECHNIQUES

100 YEAR FLOODPLAIN MAP

CALVERTON CHANNEL REHABILITATION 100 YEAR FLOODPLAIN MAP

SCALE 1" = 120'

100 YEAR FLOODPLAIN REDUCTIONS

Typical 100 Year Floodplain Reductions: Channel Segment from Calverton Boulevard to Prince George's County Boundary

100 YEAR FLOODPLAIN REDUCTIONS

Typical 100 Year Floodplain Reductions: Channel Segment from Calverton Boulevard to Beltsville Drive

A GREEN CORRIDOR HELPS RESTORE THE CHESAPEAKE BAY

Drainage Area Post-BMP Reductions												
Drainage	Impervious	Pervious	Total	Pre-l	SMP LOAD	S (lb/yr)	Post-B	MP LOAD	S (lb/yr)	Post-E	3MP % Red	uction
Area	Area (ac)	Area (ac)	Area (ac)	TN	TP	TSS	TN	TP	TSS	TN	TP	TSS
DA1	6.2	18.6	24.8	176	13	41,591	176	13	41,591	0%	0%	0%
DA2	1.5	1.9	3.4	1	2	5,626	1	2	5,626	0%	0%	0%
DA3	20.8	42.4	63.2	467	38	105,813	463	34	103,569	1%	9%	2%
DA4	4.2	2.2	6.5	56	6	10,849	56	6	10,849	0%	0%	0%
DA5	0.6	0.1	0.7	6	1	1,175	0	0	0	100%	100%	100%
DA6	24.5	14.8	39.3	335	37	65,749	320	23	56.675	5%	37%	14%

BMP Reduction by Practice												
Practice	Pre-BMP LOADS (lb/yr)			Reduction (lb/yr)			Post-BMP LOADS (lb/yr)			Post-BMP % Reduction		
	TN	TP	TSS	TN	ТР	TSS	TN	ТР	TSS	TN	ТР	TSS
RSC				11	10	6,732	6,606	629	780,234	0.2%	2%	1%
Stream Restoration	6,617	639	786,966	210	190	125,664	6,407	449	661,302	3%	30%	16%
Watershed Post-BMP Reduction												
Drainage	Impensious	Pervious	Total	Pro		S (lb/yr)	Post-B	MPLOAD	S (lb/yr)	Post-F	MP % Red	uction

CRABS		N.	
	in in	11	
		Proved	
			~
- PAR			

The natural filtering capacity of the proposed Calverton Channel Green Corridor will treat over 250 acres of impervious surface to help restore the Chesapeake Bay

4

Area

Total Watershe

Area (ar

DESIGN TO BUILD GREEN CORRIDOR PROCESS

Design to Permit October 2017-December 2019

Construction June 2020- September 2021

> 2-5 Years Monitoring & Stabilizing 2021- 2026

Adaptive Management Stabilization repairs and removal of blockages only as needed

WHAT TO EXPECT

WHAT TO EXPECT AS THE PROJECT IS CONTRUCTED:

- Erosion and sediment control measures installed first with a temporary construction access road.
- Some trees will need to be removed as part of the project. The stumps of some trees may remain to regenerate. Logs and branches will be reused to help reestablish organic matter in the natural stream corridor.
- Conservation Fence will be installed after rough grading and removals to provide boundary within your yards and minimize inconvenience to you, your children, and pets.
- Construction activity(use of heavy equipment) will occur between the hours of 8 AM and 5 PM Monday-Friday.
- Project schedule is contingent on weather. However, to keep on schedule, some construction may occur during
- the weekends but will not start before 9:00 AM.
- Project activity which does not utilize equipment may occur from 6:30 AM to 7:00 PM Monday through Saturday.
- As an active waterway, the contractor may access the site to secure the project area regardless of schedule or with Equipment utilized
- Regardless of timing to secure the site.
- In the segment from the County line to Calverton Boulevard, the project will utilize only DPW&T easement areas.
- The stream will be temporarily conveyed outside of the channel in segments to allow construction. Concrete will be
- Removed in 50 to 100' segments. Once removal and grading is completed, the natural stream lining will be installed.
- The natural stream segment will be planted with native plants after the stone materials and grading is completed.
- The contractor is responsible for watering and maintaining the plants for the first two years.

EXAMPLES OF OTHER COUNTY RESTORATION PROJECTS

EXAMPLES OF OTHER COUNTY RESTORATION PROJECTS

NEXT STEPS

- Project will go to bid with construction to start summer of 2020.
- Sheds and/or related structures within DPW&T's easements must be relocated outside DPW&T easement by May 1st of 2020.
- Notification to all landowners directly adjacent project segment will be notified of final project schedule.
- Project will be constructed in phases with the upper channel segment from the County line to Calverton Boulevard to be constructed first initiated in the summer of 2020.

Department of Public Works and Transportation

QUESTIONS?

FOR ADDITIONAL INFORMATION OR QUESTIONS PLEASE CONTACT : MARY ABE, DPW&T PROJECT MANAGER, OE&PM <u>Mabe@co.pg.md.us</u> or 301-883-5627