

TECHNO-GRAM 004-2023

SUBJECT: Pollutant Loading Calculations

- **PURPOSE:** The purpose of this Techno-gram is to establish procedures for submitting pollutant loading for stormwater management best management practices (BMPs).
- **SCOPE:** This Techno-gram establishes a new As-built Plan submittal requirement for BMPs.

Effective immediately, the Department of Permitting, Inspections and Enforcement (DPIE) will require submittal of pollutant loading calculation information for each BMP. This information shall be submitted with all As-built Plans. The attached form shall be filled out by the Design Engineer, one form for each BMP.

This information is required to enable Prince George's County to capture new and redevelopment BMP load reduction information required by the Maryland Department of the Environment (MDE). The first page of the form is intended to be filled out by the As-built Engineer of record.

The second page has two sections to be filled out by the County.

- DPIE (GIS) to confirm the data/BMP features have been digitized.
- The Department of the Environment (DoE) to adjust the loads for Land River Segments (edge of stream or edge of tide).

The remaining pages are for information only, to provide supporting methodology information and Pollutant Loading Reduction Calculator for calculating the BMP reduction loads using the MDE design manual.

APPROVED BY:

Dawit Abraham

Dawit Abraham, P.E. Acting Director

August 3, 2023

PRINCE GEORGE'S COUNTY DEPARTMENT OF PERMITS, INSPECTION , AND ENFORCEMENT Stormwater Pollutant Load Calculator

Note: Blue Cold	or Cells Need to be	e Filled , green cells	are calculated val	ues.		Jan-23				
	т	HIS SECTION IS TO	BE COMPLETED B	Y THE DESIGN	I ENGINEER					
DPIE Permit #:	123	Project Name:	123							
Site Address:	123		City:		State/ZIP:	123	123			
BMP Type:	Enhanced Filters	5 - RR	Practice Type:	Runoff	Reduction	BMP ID:	12			
		CONTRIBUT	ING AREA DRAINI	NG TO THE B	MP					
Drainage Ar	ea to BMP (<mark>A</mark>)	Impervio	ous Cover Treated	l (I)	Maintenance A	rea Responsi	bility			
UNITS	S: Acres	Percent Treated	Area Treated	l in Acres	Private or Public					
0	.45	77.8	0.350)1	Private					
		REQUIRED	WATER QUALITY	VOLUME (ESE	₽ _∨)					
Woods in Go	bod Condition	Runoff depth C	Co-eff. RV = 0.05 +	0.009 ()	Runoff Volum	e ESD _{V(required}	(acre-feet)			
Target Rainf	all PE (inches)	Imperviou	s (I) is in % (See Ro	ef. 1)	=(PE) x (RV) x (A) / 12 (Se	ee Ref. 1)			
based	on Ref. 2			0.75	. , .	, , , , , , ,	,			
	1.80			0.75			0.05			
)					
Provided Wat	er Quality Volum	e FSD		TIONS (Pdesign						
feet) h	ased on Design C	alculation*	Design Rainfall P uses (inches) = FSD $(x + y + 12)/[(RV) \times (\Delta)]$							
	0.040		Design tu	design ("	$\frac{1}{1} \frac{1}{42}$					
	0.040				1.72					
		RAINFALL DEPT	H TREATED PER I	MPERVIOUS /	ACRES					
Dura off doubh	(in the co) -			Removal Eff	iciency (<mark>RE</mark>) TP	Removal Eff	ficiency (RE)			
	(Incnes) =	Removal Efficier	ncy (RE) IN (%)	(%) See Ad	justor Curves	TSS (%) Se	e Adjustor			
(P _{design} / PE) X 2	2.0 (See Kel. 9)	See Adjustor (Lurves Ref. 5	R	ef. 5	Curves	Ref. 5			
2	.05	67	7		78	8	4			
		POLLUTANT	LOAD REDUCTIO	N CALCULATI	ON					
Load	Type	Statewide Urban	Unit Load (<mark>UUL</mark>) I	os/acre/year	Load Reductio	n Achieved by	/ <mark>ESD_v</mark> (lbs) =			
			(see Ref. 6)		(UUL) x (I) x (RE) (See	Ref. 8)			
Total Nitrogen	(TN)		20.39			4.79				
Total Phosphor	us (TP)		2.55			0.70				
Total Suspende	d Solids (TSS)		8,793.00			2,589.08				
* ESD _{V design} sho	uld be as close as	s possible to the ESI	D _{V required} , if less the	en the untrea	ted volume sho	uld be manag	ed			
downtream by	the next BMP.					-				
I hereby certify	to the best of my	knowledge that the	e stormwater man	agement faci	lity (BMP) as ref	ferenced in the	e permit			
number shown	above, has been	constructed in acco	rdance with the pl	ans and speci	fications approv	ed by Prince (George's			
County, and pro	ovides the imperv	ious area treatment	t stated in this cer	tification.						
					DAIE: Signaturo DE					
					Signature PE					
	LICENSE #:				Jeai.					

PRINCE GEORGE'S COUNTY DEPARTMENT OF THE ENVIRONMENT (New Development Only)

THIS	SECTION IS TO BE	E COMPL	ETED I	BY THE DESIGN ENG	GINEER	
DPIE Permit #:		Project	Name:			
Address:		City:			State:	Zip:
BMP Type:			Pur	rpose of BMP Construction:		
Drainage Area to BMP (A)	Impe	Impervious Cover Treated (I) BMP Maintenance F			ance Responsibility	
Acres	%			Acres	Private	Public
RE	EQUIRED WATER O	QUALITY	VOLUN	IE CALCULATION (E	SD _V)	
Woods in Good Condition Targe (inches) based on Ref. 2	t Rainfall P _E	Runoff (Impervio	Co-eff. I ous (I) i	R_v = 0.05 + 0.009 (I) s in % (See Ref. 1)	Runoff Volum =(P _E) x (R _V) x 1)	e ESD _V (acre-feet) (A) / 12 (See Ref.
	DESIGN RA	INFALL (CALCU	LATION (P _{design})		
Provided Water Quality Volume feet) based on Design C	ESD _{V(design)} (acre- Calculation	Design Rainfall P_{design} (inches) = $ESD_{V(design)} \times 12 / [(R_V) \times (A)]$				
RAINFALL DEPTH	I TREATED PER IM	PERVIOL	JS ACF	RE TO ACCOUNT FO	R ESD TO THE	EMEP
Runoff depth Q (inches) = (P _{design} / P _E) x 2.6 (See Ref. 9)	Removal Efficien See Adjustor C	cy (RE) T Surves Re	N (%) f. 5	Removal Efficienc TP (%) See Adju Curves Ref.	y (RE) R ustor (I 5 Adj	emoval Efficiency RE) TSS (%) See ustor Curves Ref. 5
	POLLUTANT L	OAD RE	DUCTIO	ON CALCULATION		
	Statewide Urba	an Unit Lo	bad	Load Reduction Ac	chieved by ESE)v (lbs) = (UUL) x (l)
	(UUL) lbs/acre/ye	ear (See F	Ret. 6)	X	(RE) (See Ref.	8)
I otal Nitrogen (IN)	20.3	59 F				
	2.5	5				
Total Suspended Solids (TSS)	8,79	13				

I hereby certify to the best of my knowledge that the stormwater management facility (BMP) as referenced in the permit number shown above, has been constructed in accordance with the plans and specifications approved by Prince George's County, and provides the impervious area treatment stated in this certification.

Company Name: _____

Date:	

Licensed Engineer: _____ Signature/ PE Seal: _____

License Number: _____

THIS SECTION IS TO BE COMPLETED BY DPIE						
Case No:		BMP Site ID#	Structure ID#			
Built Date:	Digitized By:	Approval Date:	Approved By:			

	THIS SECTION IS TO BE COMPLETED BY DOE									
TMDL Watershed (MDE 8):			BMP Class:	Local TMDL:	Bay TMDL:					
Phase 6 Mod TN	el Segment Delive TP	ry Factor (Ref. 7) TSS	Ultimate TN Reduction Achieved by ESDv (lbs) = (TGL) x (RE) x (DF)	Ultimate TP Reduction Achieved by ESDv (lbs) = (TGL) x (RE) x (DF)	Ultimate TSS Reduction Achieved by ESDv (lbs) = (TGL) x (RE) x (DF)					

Loads Calculated By:

Date:

Example Calculations for Target Rainfall

Compute Woods in Good Condition Target Rainfall PE

(Source: Section 5.2.3 of Maryland Stormwater Design Manual, Volume I and Volume II, Maryland Department of the Environment, 2000):

5.2.5 Design Examples: Computing ESD Stormwater Criteria

Design examples are provided only to illustrate how ESD stormwater sizing criteria are computed for hypothetical development projects. These design examples are also utilized elsewhere in the manual to illustrate design concepts.

Design Example No. 5.1: Residential Development - Reker Meadows

The layout of the Reker Meadows subdivision is shown in Figure 2.6.

Site Data:

Location:	Frederick County, MD
Site Area:	38.0 acres
Drainage Area:	38.0 acres
Soils:	60% B, 40% C
Impervious Area:	13.8 acres

Step 1: Determine ESD Implementation Goals

The following basic steps should be followed during the planning phase to develop initial targets for ESD implementation.

A. Determine Pre-Developed Conditions:

The goal for implementing ESD on all new development projects is to mimic forested runoff characteristics. The first step in this process is to calculate the RCN for "woods in good condition" for the project:

· Determine Soil Conditions and RCNs for "woods in good condition"

Soil Conditions

HSG	RCN	Area	Percent				
A	38 ^I	0	0%				
В	55	22.8 acres	60%				
С	70	15.2 acres	40%				
D	77	0	0%				
RCN for "woods in good condition" (Table 2-2, TR-55)							

[‡] Actual RCN is less than 30, use RCN = 38

· Determine composite RCN for "woods in good condition"

$$RCN_{woods} = \frac{(55 \times 22.8 \text{ acres}) + (70 \times 15.2 \text{ acres})}{38 \text{ acres}} = 61$$

The target RCN for "woods in good condition" is 61.

B. Determine Target PE Using Table 5.3:

PE = Rainfall used to size ESD practices

During project planning and preliminary design, site soils and proposed imperviousness are used to determine the target PE for sizing ESD practices to mimic wooded conditions.

• Determine Proposed Imperviousness (%I)

Proposed Impervious Area (as measured from site plans): 13.8 acres

- %I = Impervious Area / Drainage Area
 - = 13.8 acres / 38 acres
 - = 36.3%;

Because %I is between 35% and 40%, both values should be checked and the more conservative result used to determine target P_E .

For this example, assume imperviousness is distributed proportionately (60/40) in B and C soils.

• Determine PE from Table

Using %I = 35% & 40% and B Soils:

		Hydrologic Soil Group								
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.			
15%	67	55								
20%	68	60	55	55		T				
25%	70	64	61	58						
30%	72	65	62	59	55					
35%	74	88	00	00	50	> '				
40%	75	66	00	00	50	>				
45%	78	68	66	62	58					

 $P_E \geq 1.8$ inches will reduce the RCN to reflect "woods in good condition" for %I = 35% & 40%

Using %I = 35% & 40% and C Soils:

			Hydr	ologic So	il Group	С	
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	Τ
15%	78	70			-		
20%	79	70					Τ
25%	80	72	70	70			Τ
30%	81	73	72	71			Т
35% -	82	74	79	72	70		Τ
40% -	84	77	75	73	71	-	Т
4501	05	70	TC	74	74		+

For %I = 35%, $P_E \ge 1.6$ inches will reduce the RCN to reflect "woods in good condition" For %I = 40%, $P_E \ge 1.8$ " to achieve the same goal.

For this project, P_E happens to be the same for both soil groups, therefore use $P_E = 1.8$ inches of rainfall as the target for ESD implementation.

C. Compute QE:

QE = Runoff depth used to size ESD practices

 $Q_E = P_E x Rv$, where $P_E = 1.8$ inches

 $\begin{array}{rcl} R_v = & 0.05 + (0.009)(I); I = 36.3 \\ = & 0.05 + (0.009 \ x \ 36.3) = 0.38 \end{array}$

Q_E = 1.8 inches x 0.38

= 0.68 inches

ESD targets for the Reker Meadows project:

P_E = 1.8 inches Q_E = 0.68 inches

By using ESD practices that meet these targets, Re_v , WQ_v , and Cp_v requirements will be satisfied. Potential practices could include swales or micro-bioretention to capture and treat runoff from the roads. Likewise, raingardens and disconnection of rooftop runoff could be used to capture and treat runoff from the houses.

Example: Calculations for Load Reductions achieved by an ESD Facility (New Development)

Compute Runoff Volume ESD_v

It is assumed that a site area [Drainage Area (A) = 0.45 acres, Impervious Area (I) = 0.35 acres, Percent Impervious = $0.35 \times 100/0.45 = 77.8\%$, Target Rainfall P_E = 1.8 inches] has been treated by a Runoff Reduction (RR) BMP such as Micro-bioretention. The total load reductions achieved by the Micro-bioretention facility is calculated in the following steps,

Target Rainfall
$$P_E = 1.8$$
 inches

Runoff Coefficient
$$R_V = 0.05 + 0.009 \times (77.8) = 0.75$$

Therefore, Target Runoff Volume (ESD_V) to be treated by the Micro-bioretention facility will be

$$Runoff Volume ESD_V = \frac{P_E \times R_V \times A}{12} = \frac{1.8 \times 0.75 \times 0.45}{12} = 0.05 \ acre - feet$$

Compute Design Rainfall P_{design} Volume ESD_V:

Assume the actual or provided ESD_V based on design calculation is 0.04 acre-feet. Therefore, calculated design rainfall P_{design} is

Design Rainfall
$$P_{design} = \frac{ESD_V \times 12}{R_V \times A} = \frac{0.04 \times 12}{0.75 \times 0.45} = 1.42$$
 inches

Compute Rainfall Depth Treated Per Impervious Acre to Account for ESD To The MEP:

$$Runoff Depth Q = \frac{P_{design} \times 2.6}{P_E} = \frac{1.42 \times 2.6}{1.8} = 2.05 \text{ inches}$$

Compute Load Reduction achieved by an ESD Facility:

Removal Efficiency (RE) for Total Nitrogen (TN) from Adjustor Curves for an RR facility with Runoff Depth 2.05 inches is 67%

Removal Efficiency (RE) for Total Phosphorous (TP) from Adjustor Curves for an RR facility is 78%

Removal Efficiency (RE) for Total Suspended Solids (TSS) from Adjustor Curves for an RR facility is 84%

From Reference 6, Statewide Urban Unit Load (UUL) in Ibs/acre/year for TN, TP, and TSS are:

UUL for TN = 20.39 *lbs/acre/year* UUL for TP = 2.55 *lbs/acre/year*

*U*UL for TSS = 8,793 *lbs*/acre/year

Total Load Reduction Achieved by RR facilities are

```
TN \ Reduction = (UUL \ for \ TN) \times (I) \times RE= 20.39 \times 0.35 \times 0.67 = 4.78 \ lbsTP \ Reduction = (UUL \ for \ TP) \times (I) \times RE= 2.55 \times 0.35 \times 0.78 = 0.70 \ lbsTSS \ Reduction = (UUL \ for \ TSS) \times (I) \times RE= 8,793 \times 0.35 \times 0.84 = 2,585.14 \ lbs
```

Removal Efficiency (RE) for Total Nitrogen (TN) from Adjustor Curves for an RR facility with Runoff Depth 2.05 inches is 67%

Reference 1

Table 2, Page 5.18, Maryland Stormwater Design Manual, Volume I and Volume II, Maryland Department of the Environment, 2000.

5.2.2 Environmental Site Design Sizing Criteria

The criteria for sizing ESD practices are based on capturing and retaining enough rainfall so that the runoff leaving a site is reduced to a level equivalent to a wooded site in good condition as determined using United States Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) methods (e.g., TR-55). The basic principle is that a reduced runoff curve number (RCN) may be applied to post-development conditions when ESD practices are used. The goal is to provide enough treatment using ESD practices to address Cp. requirements by replicating an RCN for woods in good condition for the 1-year rainfall event. This eliminates the need for structural practices from Chapter 3. If the design rainfall captured and treated using ESD is short of the target rainfall, a reduced RCN may be applied to postdevelopment conditions when addressing stormwater management requirements. The reduced RCN from Table 5.3 is calculated by subtracting the runoff treated by ESD practices from the total 1-year 24-hour design storm runoff. Table 5.3 was developed using the "Change in Runoff Curve Number Method" (McCuen, R., MDE, 1983) to determine goals for sizing ESD practices and reducing RCNs if those goals are not met. During the planning process, site imperviousness and soil conditions are used with Table 5.3 to determine a target rainfall for sizing ESD practices. Table 5.3 is also used to determine the reduced RCNs for calculating additional stormwater management requirements if the targeted rainfall cannot be met using ESD practices. ESD Sizing Requirements: PE = Rainfall Target from Table 5.3 used to determine ESD goals and size practices QE = Runoff depth in inches that must be treated using ESD practices = P_E x R_v; R_v = the dimensionless volumetric runoff coefficient = 0.05 + 0.009(I) where I is percent impervious cover ESD_v = Runoff volume (in cubic feet or acre-feet) used in the design of specific ESD practices where A is the drainage area (in square feet or acres) $=\frac{(P_E)(R_v)(A)}{12}$

Reference 2

Table 5.3, Page 5.21 to 5.22, Maryland Stormwater Design Manual, Volume I and Volume II, Maryland Department of the Environment, 2000.

Hydrologic Soil Group A										
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	40									
5%	43									
10%	46									
15%	48	38								
20%	51	40	38	38						
25%	54	41	40	39						
30%	57	42	41	39	38					
35%	60	44	42	40	39					
40%	61	44	42	40	39					
45%	66	48	46	41	40					
50%	69	51	48	42	41	38				
55%	72	54	50	42	41	39				
60%	74	57	52	44	42	40	38			
65%	77	61	55	47	44	42	40			
70%	80	66	61	55	50	45	40			
75%	84	71	67	62	56	48	40	38		
80%	86	73	70	65	60	52	44	40		
85%	89	77	74	70	65	58	49	42	38	
90%	92	81	78	74	70	65	58	48	42	38
95%	95	85	82	78	75	70	65	57	50	39
100%	98	89	86	83	80	76	72	66	59	40

Table 5.3	Rainfall	Targets/Runoff	f Curve]	Number	Reductions	used for	ESD
-----------	----------	----------------	-----------	--------	------------	----------	-----

	Hydrologic Soil Group B									
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	61									
5%	63									
10%	65									
15%	67	55								
20%	68	60	55	55						
25%	70	64	61	58						
30%	72	65	62	59	55					
35%	74	66	63	60	56					
40%	75	66	63	60	56					
45%	78	68	66	62	58					
50%	80	70	67	64	60					
55%	81	71	68	65	61	55				
60%	83	73	70	67	63	58				
65%	85	75	72	69	65	60	55			
70%	87	77	74	71	67	62	57			
75%	89	79	76	73	69	65	59			
80%	91	81	78	75	71	66	61			
85%	92	82	79	76	72	67	62	55		
90%	94	84	81	78	74	70	65	59	55	
95%	96	87	84	81	77	73	69	63	57	
100%	98	89	86	83	80	76	72	66	59	55

RCN Applied to Cp_v Calculations

	Hydrologic Soil Group C									
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	74									
5%	75]								
10%	76									
15%	78									
20%	79	70								
25%	80	72	70	70						
30%	81	73	72	71						
35%	82	74	73	72	70					
40%	84	77	75	73	71					
45%	85	78	76	74	71					
50%	86	78	76	74	71					
55%	86	78	76	74	71	70				
60%	88	80	78	76	73	71	[
65%	90	82	80	77	75	72				
70%	91	82	80	78	75	72				
75%	92	83	81	79	75	72				
80%	93	84	82	79	76	72				
85%	94	85	82	79	76	72				
90%	95	86	83	80	77	73	70			
95%	97	88	85	82	79	75	71			
100%	98	89	86	83	80	76	72	70		

Table 5.3 Runoff Curve Number Reductions used for Environmental Site Desig	n (continued)
--	---------------

1	Hydrologic Soil Group D									
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	80									
5%	81									
10%	82									
15%	83									
20%	84	77								
25%	85	78								
30%	85	78	77	77	J					
35%	86	79	78	78						
40%	87	82	81	79	77					
45%	88	82	81	79	78					
50%	89	83	82	80	78					
55%	90	84	82	80	78					
60%	91	85	83	81	78					
65%	92	85	83	81	78					
70%	93	86	84	81	78					
75%	94	86	84	81	78					
80%	94	86	84	82	79					
85%	95	86	84	82	79					
90%	96	87	84	82	79	77				
95%	97	88	85	82	80	78				
100%	98	89	86	83	80	78	77			

Cpv Addressed (RCN = Woods in Good Condition)

RCN Applied to Cp_v Calculations

Reference 3

Table 2, Page 7, Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated Guidance for National Pollutant Discharge Elimination System Stormwater Permits, Maryland Department of the Environment, June 2020.

Runo	ff Reduction (RR) Practices	Stormwater Treatment (ST) Practices			
Manual Reference	Practice	Manual Reference	Practice		
	Infiltration	Ponds			
M-3	Landscape Infiltration	P-1	Micro-Pool Extended Detention (ED)		
M-4	Infiltration Berm	P-2	Wet Pond		
M-5	Dry Well	P-3	Wet ED Pond		
	Filtering Systems ¹	P-4	Multiple Pond		
F-6	Bioretention	P-5	Pocket Pond		
M -2	Submerged Gravel Wetland		Wetlands ²		
M-6	Micro-Bioretention	W-1	Shallow Wetland		
M- 7	Rain Garden	W-2	ED Shallow Wetland		
M-9	Enhanced Filter	W-3	Pond/Wetland System		
	Open Channel Systems	W-4	Pocket Wetland		
O-1	Dry Swale		Infiltration ²		
M-8	Grass Swale	I-1	Infiltration Trench		
M-8	Bio-Swale	I-2	Infiltration Basin		
M-8	Wet Swale	Filtering Systems			
	Alternative Surfaces	F-1	Surface Sand Filter		
A-1	Green Roof	F -2	Underground Filter		
A-2	Permeable Pavement	F-3	Perimeter Filter		
A-3	Reinforced Turf	F-4	Organic Filter		
	Other Systems	F-5	Pocket Filter		
M-1	Rainwater Harvesting				
Notes:					

Table 2. Stormwater BMPs for Upland Applications

¹ A dry channel regenerative step pool stormwater conveyance system is considered a stormwater retrofit by the CBP Stream Restoration Expert Panel. This practice may use the BMP code SPSD and use the same pollutant load reductions as a filtering practice. The impervious area draining to these practices may be considered treated in accordance with the design rainfall depth treated (PE) for crediting purposes.

² Stormwater wetlands, infiltration trenches, and infiltration basins are ST practices unless designed according to Section VI.

Reference 4

 Table 3, Page 8, Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated Guidance for National

 Pollutant Discharge Elimination System Stormwater Permits, Maryland Department of the Environment, June 2020.

Rainfall Depth Treated	TN Removal Efficiency (%)		TP Rei Efficien	moval cy (%)	TSS Removal Efficiency (%)		
(inches)	RR	ST	RR	ST	RR	ST	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.20	23.3	13.6	27.2	21.4	29.1	27.2	
0.40	39.2	22.8	45.7	35.9	48.9	45.7	
0.60	49.3	28.8	57.5	45.2	61.7	57.5	
0.80	55.7	32.5	65.1	51.1	69.7	65.1	
1.00	59.7	35.0	69.9	54.9	74.9	69.9	
1.20	62.5	36.5	73.0	57.4	78.3	73.0	
1.40	64.4	37.6	75.2	59.1	80.7	75.2	
1.60	65.6	38.4	76.7	60.3	82.3	76.7	
1.80	66.4	38.8	77.6	61.0	83.3	77.6	
2.00	66.8	39.1	78.2	61.4	83.9	78.2	
2.20	67.1	39.2	78.4	61.7	84.2	78.4	
2.40	67.5	39.3	78.6	61.9	84.6	78.6	
2.60 ¹	67.9	39.4	78.8	62.1	85.0	78.8	
2.80 ¹	68.3	39.5	79.0	62.3	85.4	79.0	
3.00 ¹	68.6	39.6	79.2	62.5	85.8	79.2	
Note: ¹ Values exceed the adjustor curves and are extrapolated from the CBP formulas.							

Table 3. TN, TP, and TSS Removal Efficiencies for Upland BMPs

Reference 5

Appendix A, Adjustor Curves, Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated Guidance for National Pollutant Discharge Elimination System Stormwater Permits, Maryland Department of the Environment, June 2020.

Reference 5 (Cont^d.)

Total Phosphorus (TP) Removal

Total Suspended Sediment (TSS) Removal for Runoff Reduction (RR) and Stormwater Treatment (ST) Stormwater Practices

Reference 6

 Table 4, Page 9, Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated Guidance for National

 Pollutant Discharge Elimination System Stormwater Permits, Maryland Department of the Environment, June 2020.

I and Samuel	Statewide EOS Urban Unit Load (lbs/acre/yr)						
Load Source-	TN	TP	TSS				
Aggregate Impervious	20.39	2.55	8,793				
Impervious Road	36.43	6.89	20,055				
Mixed Open	8.19	1.58	3,552				
Septic	16.83	0.00	0.00				
Tree Canopy over Impervious	33.33 6.13		18,651				
Turf	13.43	2.10	3,552				
Tree Canopy over Turf	10.23	1.60	3,346				
True Forest	2.31	0.32	747				
Total Urban	12.88 1.42		3,212				
Note:							
¹ For more information on Load Sources in the Phase 6 Model, see Appendix B.							

Table 4. Statewide Edge-of-Stream Urban Unit Load Summary

Reference 7

Phase III Watershed Implementation Plan - Maryland Delivery Factor (Edge-of-Stream to Edge-of-Tide Conversion Factors)

Source: Appendix L, Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated Guidance for National Pollutant Discharge Elimination System Stormwater Permits, Maryland Department of the Environment, June 2020.

Reference 8

Steps for calculating loads reduced by BMPs, (See example at Page 49), Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated Guidance for National Pollutant Discharge Elimination System Stormwater Permits, Maryland Department of the Environment, June 2020.

TN Load Reductions of Stormwater Best Management Practices Steps for calculating EOT TN load reductions:

1. Determine the Phase 6 modeling segment delivery factor (see Appendix L).

2. Determine the impervious drainage area treated by the practice.

3. If the project is a retrofit, determine the pre-restoration stormwater BMP type, inches of rainfall depth treated, and the corresponding upland BMP efficiency. Otherwise, use the drainage area to calculate the TN load without a BMP efficiency.

4. Calculate the pre-restoration TN load reduction using Equation 4 of this Guidance, and repeated below.

Load Reduction $\left(\frac{us}{vr}\right)$

$$= Urban \ Unit \ Load \left(\frac{lbs}{\frac{acre}{yr}}\right) x \ Imperv. Surf. in BMP \ Drainage \ Area \ (acres) x \ \frac{BMP \ Efficiency}{100} x \ Phase \ 6 \ Model \ Segment \ Delibery \ Factor$$

5. Determine the post-restoration stormwater BMP type, inches of rainfall depth treated, and the corresponding upland BMP TN efficiency.

- 6. Calculate the post-restoration TN load reduction using Equation 4.
- 7. Subtract the result from the pre-restoration TN load to determine the TN credit obtained from the stormwater BMP:

$$TN \ Credit \ \left(\frac{lb}{yr}\right) = Pre \ Restoration \ TN \ Load \ Reduction \ \left(\frac{lb}{yr}\right) - Post \ Restoration \ TN \ Load \ Reduction \ \left(\frac{lb}{yr}\right)$$
$$TP \ Credit \ \left(\frac{lb}{yr}\right) = Pre \ Restoration \ TP \ Load \ Reduction \ \left(\frac{lb}{yr}\right) - Post \ Restoration \ TP \ Load \ Reduction \ \left(\frac{lb}{yr}\right)$$
$$TSS \ Credit \ \left(\frac{lb}{yr}\right) = Pre \ Restoration \ TSS \ Load \ Reduction \ \left(\frac{lb}{yr}\right) - Post \ Restoration \ TSS \ Load \ Reduction \ \left(\frac{lb}{yr}\right)$$

Reference 9

Appendix K: Reporting New Development, Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated Guidance for National Pollutant Discharge Elimination System Stormwater Permits, Maryland Department of the Environment, June 2020.

Appendix K: Reporting New Development

Best management practices (BMPs) implemented to meet new development requirements may not be used for credit toward stormwater wasteload allocations (SW-WLAs) or impervious acre restoration. However, local governments are required to report data for new development, redevelopment, and restoration projects on the Department's MS4 Geodatabase so that net pollutant loads will be calculated in the Chesapeake Bay Watershed Model. The discussion below will provide guidance on the proper reporting of urban BMP data.

Current Maryland regulations require that environmental site design (ESD) be used to the maximum extent practicable (MEP) to reduce the runoff from new development and replicate the hydrologic characteristics of forested conditions. To meet this requirement on a new development project, ESD practices must be used either exclusively or, where necessary, in combination with structural practices to provide sufficient treatment and reduce the volume of runoff from the 1 year, 24 hour design storm. For new development projects, this standard is based on the median value of the 1 year storm for Maryland, or 2.7 inches of rainfall.

Pollutant removal rates for upland stormwater practices are determined using the Adjustor Curves from the Chesapeake Bay program (CBP) publication *Recommendations of the Expert Panel for New State Stormwater Performance Standards* (Schueler and Lane, 2012 and 2015) that are found in Appendix A. These curves are a function of the type of practices used and the rainfall depth treated per impervious acre. On these curves, BMPs are classified as either runoff reduction (RR) or stormwater treatment (ST) practices as outlined in Table 2 (see Section IV).

Maryland's ESD sizing criteria (see Chapter 5, pp 5.18-19 of the 2000 Stormwater Design Manual, i.e. the Manual) mandates that ESD practices be used to treat the runoff from 1 inch of rainfall (i.e., $P_E = 1$ inch) on all new developments where stormwater management is required. After all reasonable opportunities for using ESD practices are exhausted, structural practices (i.e., those found in Chapter 3 of the Manual) may be used to address any remaining requirements. As discussed in Section IV, the ESD practices listed in the Manual are considered RR practices when using the adjustor curves. Likewise, the structural practices found in Chapter 3 of the Manual are considered ST practices.

When using the adjustor curves to determine removal efficiency for each pollutant (i.e., TN, TP, and TSS), the runoff depth (in inches) per impervious acre treated is used to determine the RR and ST pollutant removal efficiencies. Also, the most significant difference between the RR and ST curves for each pollutant is from 0 to 1 inch of runoff depth. For runoff depths greater than 1 inch, there is little difference in the slopes of the two RR and ST curves.

The ESD sizing criteria are based on capturing and treating the runoff from 2.7 inches of rainfall. For an impervious surface, the runoff depth from 2.7 inches of rainfall is approximately 2.6 inches. Therefore, new development projects that fully meet the ESD to the MEP mandate should use 2.6 inches for the runoff depth treated per impervious acre.

Because ESD practices must be used to treat at least 1 inch of rainfall, the RR curves are used to determine pollutant removal rates up to a runoff depth of 1 inch. However, and as noted above, there is little to no difference between the RR and ST slopes/curves beyond 1 inch. Therefore,

the RR curves may be used to determine pollutant removal efficiencies where ESD and structural practices are used to address new development stormwater management requirements. Where the ESD to the MEP requirements are fully addressed (i.e., the PE is fully addressed), the runoff depth of 2.6 inches is used in conjunction with the curves. Equation 20 may be used to determine the runoff depth treated where the ESD requirements are not fully addressed.

Equation 18. Calculation of Rainfall Depth Treated per Impervious Acre to Account for ESD to the MEP

$$Q = \left(\frac{P_{design}}{P_E}\right) \times 2.6$$
 inches

Where:

Q = Runoff depth treated per impervious acre (inches) to be used with the adjustor curves P_{design} = The rainfall treated by stormwater management practices (inches) P_E = The rainfall target used to size ESD practices

Table 29 provides the pollutant removal rates for stormwater management meeting ESD to MEP.

Table 29. Pollutant Removal Rates for ESD to the MEP

Sediment	85%
Total Phosphorus	78.8%
Total Nitrogen	67.9%